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In this paper we present the results of numerical simulations of the µ+SR
experiment as realised on three spectrometers. Our interest here is in the rel-
ativistic dynamics of the particles involved in the experiment. We begin with
considering the magnetic fields applied to the sample before deriving their effect
on charged particles. The effect of the fields on the incoming muon beam and
outgoing positron ensemble are considered before results are presented on the
existing EMU and ALC spectrometers and on a proposed geometry for a new
spectrometer. Preliminary results from the simulations have been published as
indicated in reference [1].

1 Introduction

The application of external magnetic fields to the sample is of considerable
importance in a µ+SR experiment. Currently, the maximum available field at
ISIS is 0.45 T, while at PSI it is 3 T. In recent months there has been an effort
in both facilities to investigate the possibility of building new instruments where
higher magnetic fields are attainable.

High magnetic fields would present a number of opportunities for muon sci-
ence. In magnetic materials, the range of fluctuation rates that could be probed
would be increased. For molecular materials, where there is the possibility of
muonium radicals, higher fields would enable both the separation of static and
dynamic relaxation and the investigation of hyperfine fields via avoided level
crossing resonances. The range of mechanisms for the diffusion of light particles
which can be probed by the experiment would also be extended. High fields are
also useful for quenching unwanted relaxation mechanisms such as that due to
muonium spin-exchange effects [1].

1.1 The need for the simulation of instruments

The possibility of high magnetic fields being applied to a µ+SR experiment
presents considerable complications. The experiment relies on the motion of
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charged particles. The application of a magnetic field B will cause the particles
to experience a Lorentz force, which will modify its motion.

The incoming positive muons travel from the production target to the sample
environment, where they are implanted in the sample. The modification of the
motion of the muon caused by an applied field may cause a change in the
illumination of the sample by the muon beam, either by focusing or defocussing
the beam or, in extreme cases, by causing muons to miss the sample completely.

Outgoing positrons, from which the information on the polarization of the
stopped muon ensemble is extracted, travel from the sample position to the
detector arrays. In most current applications, where the applied fields are small,
we assume rectilinear motion from the sample to the detectors. An applied field
in this case may cause the positron to impinge on a different detector to that
expected or to miss the detector array completely.

It is clearly necessary, therefore, to come to a detailed understanding of the
mechanics of the particles involved in the experiment. This understanding must
then be applied to existing experimental geometries and to the designs of new
instruments with more complex, or extreme environments. We present here the
methodology and results of a numerical simulation of the µ+SR experiment.

2 Theoretical considerations

2.1 External magnetic fields

The applied magnetic fields in a µ+SR experiment are achieved by passing
current through a network. The network may, mathematically, be described as
formed from the sum of many current carrying elements Idl. An element Idl
at a position x′ will give rise to an infinitesimal magnetic field dB at a position
x given by the Biot-Savart law [2]

dB(x) =
µ0Idl× (x− x′)

4π|x− x′|3
, (1)

where µ0 is the permeability of free space. A knowledge of the geometry of the
current network, therefore, allows the calculation of the magnetic fields in the
environment of the experiment.

2.2 Relativistic particle mechanics

The positrons that emerge from muon decay have energies ξ up to ξmax =
52.83 MeV. This corresponds to a velocity v = 0.9999c. It is clear, therefore,
that the results of classical mechanics will not be valid and use must be made of
the results from special relativity. In this section we discuss the relevant results
from the classical theory of fields. Tensor notation is used freely from the outset
and the Einstein summation convention is assumed [3].
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2.2.1 The equations of motion

We define the contravariant four-vector for position by

xi = (ct,x), (2)

where x is the position three vector, t is the time coordinate and c is the speed
of light.

The Lorentz transformations, for a frame moving with velocity v, may then
be written as

xµ = Λµ
νx

ν , (3)

where

Λµ
ν =









γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1









, (4)

where β = v/c and

γ =

(

1−
v2

c2

)− 1
2

. (5)

The raising and lowering of indices is achieved through the application of the
Minkovski metric tensor:

gik = gik =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









. (6)

Using equation (6), we may evaluate the invariant ds, defined by

ds2 = dxidxi. (7)

yielding, for an inertial frame S,

ds2 = −c2dt2 + dx2 + dy2 + dz2. (8)

We may equate this expression for the invariant quantity ds2, with that obtained
for a particle at rest in a system of coordinates S ′, (i.e. dx′ + dy′ + dz′ = 0),
yielding

dt′ = dt

(

1−
dx2 + dy2 + dz2

c2dt2

)
1
2

, (9)

and thus

dt′ = dt

(

1−
v2

c2

)
1
2

=
ds

c
, (10)

which defines the proper time interval dτ = dt′ = dt/γ.

3



We also define the (dimensionless) four-velocity of a particle

ui =
dxi

ds
. (11)

The components of this vector may be evaluated using equation (10), yielding
the result

ui = γ
(

1,
v

c

)

, (12)

where v is the ordinary three-velocity.
We are now in a position to consider the equations of motion of a relativistic

particle in electric and magnetic fields. The E and B fields transform as

F ik = Λi
µΛ

k
νF

µν , (13)

where F ik is the Maxwell field tensor

F ik =









0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0









. (14)

The equations of motion may be derived through considering the relativistic
Lagrangian [3], which yields

mc
dui

ds
= qF ikuk. (15)

Substituting for ui from equation (11) gives the equation of motion for a particle
with three velocity v:

d

dt
(mγv) = q(E + v ×B). (16)

2.3 Radiation from accelerating charges

It is well known that an accelerating charge will emit electromagnetic radiation.
In this section we consider the energy lost by a particle and the resulting modi-
fications to the equation of motion in both the non-relativistic (|v| ¿ c, γ ≈ 1)
and ultra relativistic (|v| ∼ c, γ À 1) limits.

2.3.1 Dipole radiation

We begin by considering the non-relativistic case of a fluctuating charge distri-
bution. We describe this distribution in terms of a current density four-vector

jµ = j(t,x) = q
dxµ

dτ
. (17)

The required quantity is the retarded four-vector potential. A system of charges
at positions x′, gives rise to a field Aµ at (t,x) given by [3]

Aµ = A(t,x) =
µ0

4π

∫

j(t− |x− x′|/c,x′)

|x− x′|
d3x′. (18)
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The spacial components of this vector at large distances |x − x′| are well ap-
proximated by the vector potential

A(t,x) =
µ0

4π|x|

dp

dt

∣

∣

∣

∣

(t−|x|/c)

, (19)

where p =
∑

qx′ is the dipole moment of the charges.
The radiated power P may be evaluated using standard methods [3] yielding

Larmor’s formula:

P =
µ0|p̈|

2

6πc
. (20)

For a single charge q we obtain

P =
q2

4πε0

2|v̇|2

3c3
. (21)

or, in terms of the energy change dξ

dξ =
q2

4πε0

2|v̇|2

3c3
dt. (22)

2.3.2 Radiation from rapidly moving charges

The discussion above may be generalised to the case of a relativistic particle. In
a frame of reference where the particle is at rest the amount of energy radiated
in the time interval dt is given by equation (22). In this frame of reference, the
total radiated momentum is zero.

Equation (22) may be written in four-dimensional form

dP i = −
q2

4πε0

2

3c3
duk

ds

duk
ds

uids. (23)

The total radiated four momentum is then given by

∆P i = −
q2

4πε0

2

3m2c5

∫

(Fklu
l)(F klum)dxi, (24)

while the radiated energy is found by evaluating the time component of equation
(24)

∆ξ =
q2

4πε0

2

3c3

∫ ∞

−∞

|v̇|2 − (v×v̇)2

c2

(1− v2

c2 )
2

dt. (25)

2.3.3 Radiation damping

We must consider the modification to the equations of motion due to the radia-
tion effects described above. A formal treatment of radiation damping requires
the modification of the Lagrangian via the expansion of potentials to third (or
possibly higher) orders. This approached may be found in reference [3].
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It can be shown, for non-relativistic particles, that the average work done
by the field is equal to the average energy radiated in unit time:

f · v =
µ0

6πc3
p̈2 =

q2

4πε0

2|v̇|2

3c3
, (26)

from which it follows that the three-force on a particle due to the emission of
radiation is, in the limit of small velocities, given by

f =
q2

4πε0

2

3c3
v̈. (27)

In the relativistic case, we require a four-vector force gi, such that the equa-
tions of motion will take on the covariant form

mc
dui

ds
= qF ikuk + gi. (28)

A suitable four-vector is

gi =
q2

4πε0

2

3c3

(

d2ui

ds2
− uiuk

d2uk
ds2

.

)

(29)

For the ultra-relativistic case, the three-force becomes

f =
q4

4πε0

2

3m2c5
(Fklu

l)(F kmum)n, (30)

where n is a unit vector along the direction of v. Evaluating this explicitly for
motion in the x-direction yields the result

fx = −
q4

4πε0

2

3m2c5
(Ey/c−Bz)

2 + (Ez/c+By)
2

1− v2

c2

, (31)

which shows that the force acts in a direction opposite to that of the particle’s
velocity. We note also that the radiation damping is proportional to the square
of the particle’s energy.

3 A numerical simulation

A numerical simulation of the µ+SR experiment has been carried out employing
the theoretical results above. The results of the simulation are computed using
a program written in FORTRAN.

The muon beam is injected at z = −1 m, with velocity in the positive z-
direction. The sample is located at z = 0 such that it is assumed that all muons
will stop in in the z = 0 plane. The muons retain their polarization (along −z)
in the stopping process. A physical realisation of this picture would be a silver
plate, with a large area located at the sample position.
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Figure 1: Schematic cross-section of the EMU spectrometer showing the
Helmholtz coils and detector arrays. The detector arrays are shown in blue.
The sample is located at the origin. All measurements are in millimetres.

Initially, the geometry modelled was that of the EMU spectrometer [5] as
shown in figure 1. The magnetic field is created by a pair of Helmholtz coils,
whose dimensions are shown in the figure. The detector array and Helmholtz
coils have cylindrical symmetry, making radial directions within the x-y plane
equivalent, which simplifies the calculation. The magnetic fields were calculated
using equation (1) for a cubic array of 5003 points, corresponding to a real space
volume of 5 m3. The integration was carried out using an algorithm based on
Simpson’s rule [4] while the field between grid-points was determined by a simple
interpolation.

The design of the Helmholtz coils is intended to supply an homogeneous
field in the z-direction. The general tendency of charges in a uniform field is to
execute cyclotron motion [3]. The trajectory of a charge q will be helical, with
a radius r given by

r = |vT|ξ/qBc2, (32)

where |vT| is the magnitude of the component of velocity in the x-y plane and
ξ is the positron energy.

The problem of modelling the µ+SR experiment splits into three parts: The
motion of the incoming muon beam, the paths of the decay positrons and the
detection of those positrons in in instrument’s detector arrays. We examine
each in turn.
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3.1 The incoming muon beam

The principles at work are well illustrated with the simple case of a collimated
muon beam with a square cross section of area 1 cm2. We remove the sample
and simply track the trajectories of positron beams located at the corners of
the square beam profile. Results of this procedure are shown in figure 2 for an
applied field of 0.45 T (the maximum field currently available on EMU).

We see that even at these relatively low fields the muon paths are perturbed
by the presence of the field. In the case shown the field is seen to focus down the
muon beam for z > 0.4 m. The focusing effect will, at higher fields, cause the
beam spot size at the sample to vary with applied field. This effect is illustrated
in figure 3 for a beam with a circular cross section (with an initial radius of
1 cm). We see that the radius of the circular beam profile at the sample, varies
in a roughly periodic fashion with applied field.

3.2 The outgoing positrons

The outgoing positrons will clearly be affected far more dramatically by the
applied field due to their smaller mass and larger initial velocities. The effects
may be illustrated by considering a simple positron ensemble. We consider eight
paths in the x-z plane, equally spaced in angle θ to the z axis. All positrons are
given the maximum allowable energy ξmax.

Figure 4 shows the results of the calculation for two applied fields. When
B = 0.45 T (figure 4(a)), the paths are not significantly perturbed by the B-field
when compared to the radius of the cylindrical detector arrays. In contrast, an
applied field of 3 T causes a significant change in the trajectories of the outgoing
positrons. It can be readily imagined that a particle under the influence of this
field may have its path perturbed enough to miss the detector on which it would
have impinged, had the field not been applied.

3.3 The instrument simulation

Using the results of the previous sections allows a full simulation of the µ+SR
experiment using EMU. Making the calculation tractable for a desktop PC
inevitably results in a number of approximations.

We model a pulse of 1000 muons with zero pulse width. This pulse begins
at z = −1 m with muons distributed normally within a rectangular beam with
a cross-section of 30 mm×15 mm. The muons stop at z = 0, where their
coordinates xµ are recorded. A Monte-Carlo approach is used to model the
muon decay [4]. The emitted positron has its energy ξ and angle θ to the z
axis chosen according to the known distributions. The positron path is then
calculated.

The positron is detected by the instrument when it impinges on a scintillation
detector. The detector geometry for EMU is shown in figure 1. Two pairs of
detector arrays are employed, each arranged into a pair of cylinders. Each
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Figure 2: Two views of an incoming muon beam in an applied field of 0.45 T.
The beam profile is a square of area 1 cm2.
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Figure 3: The radius of a collimated cylindrical muon beam (initial radius 1 cm)
at the sample position as a function of applied field. The focusing effect of the
field causes a periodic modulation of the spot size with B.

cylinder is segmented into 16 strips of equal area to reduce to effect of dead-
time. For the purpose of the simulations, the detector thickness was chosen to
be 10 mm and the detector dead time to be 10 ns. The expected range δ of a
50 MeV positron in scintillator plastic is of the order of 200 mm [7]. Over the
energy range of interest, the range may be approximated as

δ =

(

ξ

ξmax

)

× 0.3 m. (33)

With such a large range, we are faced with the possibility of positrons regis-
tering with a number of detectors. A positron leaves the experiment when its
z coordinate |z| > 1 m or for |x| or |y| > 150 mm. This reflects the fact that
a positron outside this volume will probably hit the magnet coils, cryostat or
fabric of the spectrometer.

We shall be interested in estimating the background measured in a measure-
ment. One quantity that may be readily extracted is the integrated asymmetry,
which we define as

Aint =

∑

ij NF,i(tj)−
∑

ij NB,i(tj)
∑

ij NF,i(tj) +
∑

ij NB,i(tj)
, (34)

where NF,i(tj) is the number of detected events in the ith forward detector in
time bin tj .
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Figure 4: Positron paths for eight radially directed positrons, equally spaced in
angle.(a) In an applied field of 0.45 T, the effect of the field on the trajectory is
minor. (b) In an applied field of 3 T, the trajectories are significantly perturbed.
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Figure 5: (a) The percentage of detected positrons as a function of applied
B-field. (b) Integrated asymmetry for EMU as a function of applied B-field.

4 Results and Discussion

Despite the relativistic mechanics involved, the main principles at work in the
simulation may be understood quite simply. Equation (32) shows that we would
expect the radius of helical trajectories to be inversely proportional to the ap-
plied field. As the field is increased, the radius of a helical path will be reduced
until it is smaller than the radius of the cylindrical detectors. At this point we
would not expect a contribution in the detected data from a positron following
this path. The information encoded in this positron’s initial direction is there-
fore lost. Using equation (32) we may estimate that the cyclotron radius of a
positron with the average energy will be of the order of 0.1 m in a field of order
1 T.

Figure 5(a) shows the percentage of emitted positrons detected as a function
of applied magnetic field. The fact that percentages above 100% are plotted re-
flects the fact that a positron may make multiple hits on the detector array and
therefore be detected several times. The graph is strongly peaked at B ∼ 3 T,
where the percentage rises to 200%. This corresponds to the average cylotron
radius of the positrons r being comparable to the radius of the cylindrical detec-
tor arrays, leading to large numbers of multiple hits. As the field is increased,
the average radius of the positron trajectories becomes smaller, causing large
numbers to leave the experiment without registering on a detector.

Figure 5(b) shows the integrated asymmetry as a function of applied mag-
netic field (calculated for 20 pulses at each field). The interplay of effects such
as the changing muon-spot size at the sample and the cyclotron-like positron
paths combine to create this instrument specific background. The minimum at
B ∼ 1.2 T corresponds to the first focusing of the muon beam spot (figure 3).
The large errors at high fields reflect the small number of positrons that are
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detected before leaving the apparatus.
Figure 6 shows the number of positrons detected as a function of their ini-

tial energy (expressed as a percentage of the maximum positron energy). At
0 T, the distributions are those expected for positrons directed in towards the
forward detectors (closed circles) or backward detectors (open circles). As the
applied field is increased the contribution from low energy positrons is dramat-
ically reduced, while that from those with energies close to the maximum is
maintained. Equation (32) shows that low energy positrons will execute cy-
clotron orbits with smaller radii. As the field is increased, it is these positrons
that will be lost from the experiment first. We see, therefore, that the applied
B-field acts like an energy degrader, removing the contribution from the lowest
energy (and therefore least antisymmetric) positrons. Again, we observe a peak
in the number of detected events when the average cyclotron radius becomes
comparable with the radius of the detector arrays.

5 Simulation of the ALC instrument

The Avoided Level Crossing (ALC) instrument [8] (figure 7) at PSI is used to
measure level crossing resonances [6]. The detector and magnet geometry em-
ployed are shown in figure 8. A superconducting magnet with a 1 m long central
bore, supplies fields up to 3 T. The detector geometry is, in contrast to the case
of EMU, highly asymmetric. The forward detector array (through which the
incoming muon beam travels) is cylindrical, while the backward detector array
is a flat plate. Although the detector arrays are each split into eight sectors,
the backward array uses only seven detectors, the space for the eighth being
replaced with a hole through which the cryostat and sample holder protrude.

The asymmetric detector arrangements make the expected behaviour rather
different to that simulated in the case of EMU. The backward detectors are
not cylindrical but circular. As a result, an increasing field will cause more
positrons to hit this detector array as typical cycotron radii decrease to less
than the radius of the circle. We expect, therefore, that the number of events
detected in the backward detectors will slowly increase with field. The more
dramatic field dependent structure will be observed in the forward detector
where a decrease in radius of the helical paths with increasing field will cause
the number of expected events in the forward detectors to decrease as B is
increased. We expect that the decrease in the number of forward events will
cause the integrated asymmetry to become negative at some point.

Since PSI is a continuous muon source, the time structure of the incoming
beam is very different to that considered above. The simulation does not, at
this stage, include any consideration of the time structure of the PSI muon
beam. For simplicity, a pulse of 1000 muons is still considered, but without the
deadtime correction employed for the ISIS beam. The incoming muon beam
which feeds ALC is, in reality, larger in diameter than that for EMU. It is
modelled with dimensions 30× 30 mm. A positron leaves the experiment when
its coordinate |z| > 1 m or if it impinges on the superconducting magnet (i.e.
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Figure 6: Number of detected positrons as a function of energy in the forward
(closed circle) and backward (open circle) detector arrays. As the field is in-
creased, lower energy positrons are not detected.
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Figure 7: The ALC instrument at PSI, with the backward detector array and
cryostat being inserted into the bore of the superconducting magnet.

z

x

Figure 8: Schematic cross-section of the ALC spectrometer showing the su-
perconducting magnet and detector arrays. The detector arrays are shown in
yellow. The sample is located at the origin. The red detector M is the muon
counter, necessary for a continuous source. All measurements are in millimetres.
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when |x| or |y| > 100 mm).
Figure 9 shows the main results of the simulation of the ALC instrument.

The total number of detected positron events is shown in figure 9(a) with the
counts in the forward and backward detector banks shown in figure 9(b). As
predicted, the number of counts in the backward banks shows a steady increase
with increasing field. The forward detectors show a large decrease in counts as
the cyclotron radius becomes smaller than the radius of the cylindrical detec-
tor bank. As a result of this, the integrated asymmetry (figure 9(c)) becomes
negative at around 3 T. It is not immediately clear why the number detected in
the forward detector increases above 4.5 T, after an initial drop starting around
3 T. This may be due to effects related to the large size of the incoming muon
beam.

We conclude that an asymmetric detector arrangement clearly has a signifi-
cant effect on the instrument background. In the design of future instruments,
it would be desirable to use symmetric detector banks. If an asymmetric ar-
rangement is employed, it is important to have an accurate estimate of the
background, in order that it can be distinguished from the signal due to the
sample.

6 Towards a high field spectrometer

In this section we discuss the results of simulations on possible new geometries
for a high field instrument at ISIS. The geometry considered is based around
a proposed 7 T superconducting solenoid. The solenoid has a bore of radius
170 mm and is is split into two sections to prevent the complications related to
an asymmetric detector arrangement seen in the last section. A simple detector
geometry is created via cylindrical detector arrays, with radius R, separated
into sixteen segments. This geometry is shown in figure 10.

Simulations have been carried out using the same incoming beam size and
detector parameters as used for the EMU simulation. In this case a positrons
leaves the experiment when its coordinate |z| > 1 m or when it impinges on the
magnet (i.e. |x| or |y| > 170 mm). The calculated integrated asymmetry and
the expected numbers of events are shown for a number of detector radii R in
figure 11.

For small R the number of detected events increases rapidly up to 2 T. This
reflects the fact that the angular divergence of the positron ensemble at zero field
causes most of the particles to miss the narrow detector bank cylinders, while
the applied field causes trajectories that lie closer to the axis. This rapid increase
in counts is accompanied by a pronounced minimum in integrated asymmetry
near the point where the muon beam focuses for the first time. As the field
increases, the number of counts goes through a broad maximum as the radii
of typical trajectories and that of the detector banks become comparable. We
see that at the very highest fields, the number has begun to decrease, reflecting
the fact that the positron orbits will eventually become more narrow than the
detector bank radius.
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Figure 9: Main results of the simulation of the ALC spectrometer (a) The total
number of positron counts as a function of applied magnetic field. (b) Num-
ber of counts in forward and backward detector banks. The most dramatic
field-dependent behaviour is seen in the forward detectors. (c) The asymmet-
ric detector geometry causes the integrated asymmetry to become negative at
intermediate fields.

17



z

x

R

Figure 10: Schematic of the initial design of a new instrument. The field is
supplied by a split superconducting solenoid. The detector array is a segmented
cylinder of radius R. All measurements are given in millimetres.

For large values of R the number of detected counts quickly decreases with
increasing field, falling to very low values with the application of modest mag-
netic fields. The structure in the asymmetry seen for small R is lost and the
counting errors become very significant.

For R = 75 mm we obtain a compromise between the two extremes described
above. The number detected goes through the expected maximum at B ∼ 2 T,
and tails off as B approaches 7 T. The structure in the asymmetry is also lost
at this radius.

We also consider the distance from the z = 0 plane at which the positrons
hit the detectors. In order to do this a new detector array is employed. This
again consists of sixteen detectors in each detector bank, although now they
are in the form of annular rings as shown in figure 12(a). The results of the
simulation with this detector configuration is shown in figure 12(b).

For all values of R, the detector closest to the origin detects the most events.
As R is increased we see that for a large applied field (where the total number
of detected events is relatively low) the detectors closest to, and furthest away
from, the origin detect the most events, with those in the centre of the array
detecting the fewest.

We have seen that the radius of the detector arrays and their distance from
the sample will need to be carefully chosen, if the proposed magnet is to be used
as the basis of a high field spectrometer. It is likely that a detector geometry
comprising two pairs of cylinders with different radii (as on EMU) will provide an
effective solution to the problems of detector array radius dependence and min-
imise the effects of detector dead-time. The choice of detector arrangement will
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Figure 11: Results of the simulation on the new instrument geometry for several
detector bank radii R. Upper panels: Integrated asymmetry as a function of
applied magnetic field. Lower panels: Number of detected positron events with
applied field. All x-axes are identical.
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Figure 12: (a) Detector arrangement used to test the number of detected events
as a function of distance from the sample (all measurements in mm). The two
cylindrical detector arrays are each split into sixteen rings as shown. Detec-
tors are numbered such that detector 1 is closest to the sample and detector
16 furthest away, for both forward and backward arrays. (b) Results of the
simulation on the new instrument geometry. Upper panels: Number of positron
counts summed over twenty runs in the forward detectors. Lower panels: Same
as above for the backward detector banks. All x-axes are identical.
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be subject to practical considerations such as the space required for photomul-
tiplier tubes, sample environment equipment and the fabric of the spectrometer
itself. Such considerations are outside the scope of the model at present. It
will also be necessary to decide whether the proposed instrument is to be used
exclusively at high fields, or over the entire field range.

7 Conclusion

In this paper we have discussed a first attempt at the numerical simulation of
µ+SR instruments. We have outlined the relativistic particle mechanics required
to model the trajectories of charged particles in external magnetic fields and
have applied this formalism to three spectrometers.

Inevitably this approach involved several approximations. Future work will
involve moving towards a more realistic model of the instruments. Most signif-
icantly, the time structure of the incoming muon pulse must be included more
accurately. The pulse at ISIS includes 10,000 muons stretched over 90 ns, in
contrast to the zero width pulse considered here. The inclusion of the beam-
line quadrupoles focusing this incoming beam is also necessary to accurately
calculate the pitch of the incoming beam at the sample.

Future work will involve the integration of models such as that considered in
this paper with existing beam-optics software (see, for example, [10]). The goal
of such an approach will be a model of a general µ+SR spectrometer at ISIS
or PSI, which will, for example, be able to calculate effects due to sample envi-
ronment equipment or the presence of degraders. This should allow a detailed
understanding of spectrometers already in existence and a means of modelling
those created in the future.
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