Detectors

Objectives

1. New technologies for cost effective, large area detectors
2. Evaluate the most promising candidates: ${ }^{6} \mathrm{Li}$-loaded scintillation detectors and gaseous detectors using solid ${ }^{10} \mathrm{~B}$ converters

Development of scintillation detectors

- Hardware for two Wavelength Shifting (WLS) fibre-coded scintillation detectors
- Signal processing schemes for determining when and where neutron events occur
- Scintillation detector based on GS20 glass scintillator with a SiPM readout, ${ }^{\circ}$

Development of gas detectors based on solid ${ }^{10} \mathrm{~B}$ converter

- Performance evaluation of $\mathrm{B}_{4} \mathrm{C}$ coatings produced by both magnetron sputtering and electron beam evaporation
- Macro-structured, boron-lined converter offering improved detection efficiency
- Promising technique for producing ${ }^{10} \mathrm{~B}$ films: thermal atmospheric plasma deposition
- 2D position sensitive test detector for evaluating the performance of films produced by alternative techniques
- Small test detector to evaluate coatings produced by magnetron sputtering and electron beam evaporation
- Concept detector based on a stack of large area MWPCs
- Cóncept detector using boron layers in conjunction with bulk Micromegas detector technology

OS5
HII

