SCHOOL REPORT

13^h PSI Summer School on Condensed Matter Research

School	PSI Summer School on Condensed Matter Research
Specific Title	Exploring time, energy and length scales in condensed matter
Date	August 09-18, 2014
Venue	Institut Montana Zugerberg in Zug & Paul Scherrer Institut in Villigen, Switzerland (Practical Training)
Organizer Name	Prof. Dr. Gabriel Aeppli, Martina Füglister
Affiliation Organizer	Paul Scherrer Institut
Total budget	84′000 EUR
Max NMI3-II support	5'377 EUR

Scope

The PSI Summer School in Condensed Matter and Materials Physics has been established to provide education for Ph.D. students and postdoctoral fellows working in condensed matter physics, materials science and related fields. The goal is to enable students to work at the frontiers of science and technology by providing expert training not easily available within the traditional system of graduate education and postdoctoral programs.

Students

The School brought together 56 participants from more than 10 different nationalities and affiliations to Swiss (39), EU (15) and other (2) universities & institutes. Among these participants, 23 students were invited additionally to perform the practical training at PSI.

Organisation

The school and the practical training have been organised by the following PSI Organisation Committee members:

- Rafael Abela (SwissFEL)
- Oliver Bunk (SYN department)
- Kurt N. Clausen (NUM department), chairman
- Daniela Jahns, (SYN department), school secretary
- Michel Kenzelmann (NUM department)
- Elvezio Morenzoni (NUM department)
- Christopher Mudry (NUM department)
- Stefan Müller (SYN department)
- Frithjof Nolting (SYN department)
- Christian Rüegg (NUM department)
- J. Friso van der Veen (SYN department)

The practical training was performed under the supervision of the responsible beamline scientists.

Results

The PSI summer school 2014 was dedicated to the topic: **Exploring time**, **energy and length scales in condensed matter**. International experts and PSI staff members introduced to the students the experimental methods applied at the large-scale facilities of PSI.

School web-page: http://indico.psi.ch/conferenceDisplay.py?confId=2672)

Synchrotron radiation, neutron, and muon sources are used to investigate the structural, electronic and magnetic properties of condensed matter. Using these facilities, the focus of the school is the study of dynamic processes in nature and technology, over the full range of time and length scales at which they actually occur. The principles of the underlying experimental methods have been explained. Evening lectures addressed the importance of time, energy and length scales in other scientific fields. Following the school a practical training at PSI offered unique experimental opportunities to a limited number of participants.

More than 20 world-class experts introduced the different aspects of the topic from an experimental and theoretical point of view.

The school was addressed mainly to the education of PhD and postdoctoral students without prior knowledge of photon, neutron and muon techniques. At the end of the school the students not only gained an insight into the relevance of time, energy and length scales in condensed matter, they also extended their scientific network by very useful contacts to the speakers and fellow participants.

In a poster session the participants were asked to present their own scientific work. That gave rise to lively scientific discussions among the students and with the lecturers.

23 students (including the 5 students supported by NMI3) were selected to participate in the practical training at the PSI facilities. The great opportunity to run neutron and photon experiments at one and the same institute was successfully exploited in small groups of just 4 students per experiment. Each student selected and performed two out of six prepared experiments (see list above). In a final round-table discussion each experiment was presented and discussed among the students and their supervisors.

Facility & Title of the	What was the goal?
Experiment	
SLS - TOMCAT: Fast microtomo- graphy	Fast X-ray tomography with sub second spatial resolution will reveal the muscle architecture at the micrometer scale. This is an experiment to prepare for the in vivo part of the study where the muscle changes during several beating cycles will be imaged, enabling calculations of muscle power. The results will be applied in biomimetic underwater robotics and fluid structure interaction modeling.
SLS - SIM: Imaging Magnetic Nanostructures using Soft X-ray Photoemission Electron Microscopy (PEEM)	To study the magnetic domain configuration in laterally confined ferromagnetic nanostructures.
SLS – ADRESS: Soft-X-ray angle-resolved photoelectron spectroscopy	Angle-resolved photoelectron spectroscopy (ARPES) directly probes the electronic structure of crystalline materials, surfaces and interfaces with resolution in electron momentum k. The students carry out carry out experiments on monocrystalline Ag to determine the three-dimensional band structure and Fermi surface of this prototype d- metal.

SLS – MS: X-ray Powder Diffraction - Total Scattering PDF experiment	Introduction to the Total Scattering (PDF, Pair Distribution Function) method. Data of several samples will be collected at 25 keV and an angular range 0-120 deg, plus ancillary measurements of background for subtraction. Data will then be processed and subjected to a specialized Fourier transform using the PDFGETX3 program, yielding a plot of the interatomic distances in the sample. Several samples (crystalline, nanocrystalline, amorphous; organic and inorganic) will be processed in order to show the universality of the method.
SINQ – Neutron Powder Diffraction:	Introduction to neutron powder diffraction and its application to the determination of magnetic order. A complete neutron diffraction experiment will be performed, from mounting and cooling the sample to data acquisition and data analysis.
SINQ - Cold neutron 3-axis spectroscopy	Introduction to neutron three- axis spectroscopy and its application to determination of the dispersion relationships of elementary excitations. The experiment will start from alignment of Pb single-crystal sample, further a dataset at room temperature will be collected and analysed.

NMI3 funding

According to the NMI3 confirmation letter dated June 8, 2011 to support this school by a total of \in 8.000,- we decided to fund 5 eligible participants. Those grants covered the conference fee per participant. The grants were awarded according to the following criteria:

- 1. Eligibility of the participant's affiliation
- 2. Status as Master, Ph.D. or Postdoctoral student
- 3. Recommendation letter of the supervisor
- 4. Presentation of a poster during the school
- 5. Participation at the training at the PSI facilities

One more participant (Brazilian student) was be funded by PSI directly.

E-mail organiser: martina.fueglister@psi.ch

Annex

List of Speakers

External experts:

Peter Abbamonte, University of Illinois, USA; N. Peter Armitage, The Johns Hopkins University, USA; Michael Coey, Trinity College, Ireland; Pierre Dalmas de Réotier, CEA Grenoble, INAC/SPSMS, France; Steven Johnson, ETH Zürich, Switzerland; Florian Kronast, Helmholtz-Zentrum Berlin, Germany; Tom Lancaster, Durham University, UK; M. Pavlik Lettinga, Forschungszentrum Jülich, Germany; Gaetano Mileti, Université de Neuchâtel, Switzerland; Toby Perring, Rutherford Appleton Laboratory, UK; David A. Reis, Stanford University, USA; Joachim Stöhr, SLAC National Accelerator Laboratory/Stanford University, USA; Jeroen van den Brink, IFW Dresden, Germany; Martin Weinelt, Freie Universität Berlin, Germany; Philippe Wernet, Helmholtz-Zentrum Berlin, Germany

PSI experts:

Peter Derlet, Christian Grünzweig, Rajmund Mokso, Bruce Patterson, Cinthia Piamonteze, Christian Rüegg, Gebhard F.X. Schertler, Thorsten Schmitt, Andreas Suter

1. Information about you

You are a			You have used large facilities (PSI and non-PSI) before		
Dipl./Master stude PhD Postdoc Staff scientist	ent			μSR Neutrons Photons Others Please specify	
You are planning facilities (PSI ar in the future	g to u nd nor	se large 1-PSI)		You are a Physicist	
µSR Neutrons Photons	Yes 	Maybe	No	Chemist Biologist Others Please specify	
Others Please specify					
This is the first t attending a PSI Yes No	time I Schoo	am D		I will recommend the PSI Summer School to other young scientists Yes No Maybe	
I plan to attend	anoth	er PSI Scho	ool in the	future Do you grant permission to anonymously publish your comments on the School website	
	C			Yes 🗆 No 🗆	
2. Questions conc	erning	the School			
The topic "exploring time, energy and		/ and	The topic was		
directly related	to my	work	. 13	Too focused	
Yes 🗆 No				Too broad	
The level of the	lectur	es was		The duration of the lectures was	
Too easy At the right level Too hard				Too short Just right Too long	

The lunch break was

Too short Just right Too long

Travelling to Zug

Is easy Is acceptable Is too long

I have heard of the School through

The internet	My supervisor
Friends/colleagues	Posters
Email 🗌	Other 🛛
	Please specify

Comments (Please tell us what you enjoyed, disliked, what should be changed - we will listen to your suggestions):

Too high	
Adequate	
Too low	

Housing & meals at the Institut

The School registration fee was

Montana are				
- · ·	_			

I OO DASIC	
Adequate	
Too luxurious	

specify